Attention-Based Class-Conditioned Alignment for Multi-Source Domain Adaptation of Object Detectors

Research output: Contribution to Book/Report typesContribution to conference proceedingspeer-review

1 Citation (Scopus)

Abstract

Domain adaptation methods for object detection (OD) strive to mitigate the impact of distribution shifts by promoting feature alignment across source and target domains. Multi-source domain adaptation (MSDA) allows leveraging multiple annotated source datasets and unlabeled target data to improve the accuracy and robustness of the detection model. Most state-of-the-art MSDA methods for OD perform feature alignment in a class-agnostic manner. This is challenging since the objects have unique modality information due to variations in object appearance across domains. A recent prototype-based approach proposed a class-wise alignment, yet it suffers from error accumulation caused by noisy pseudo-labels that can negatively affect adaptation with imbalanced data. To overcome these limitations, we propose an attention-based class-conditioned alignment method for MSDA, designed to align instances of each object category across domains. In particular, an attention module combined with an adversarial domain classifier allows learning domain-invariant and class-specific instance representations. Experimental results on multiple benchmarking MSDA datasets indicate that our method outperforms state-of-the-art methods and exhibits robustness to class imbalance, achieved through a conceptually simple class-conditioning strategy. Our code is available at: https://github.com/imatif17/ACIA.

Original languageEnglish
Title of host publicationProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8566-8575
Number of pages10
ISBN (Electronic)9798331510831
DOIs
Publication statusPublished - 2025
Event2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 - Tucson, United States
Duration: 28 Feb 20254 Mar 2025

Publication series

NameProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025

Conference

Conference2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
Country/TerritoryUnited States
CityTucson
Period28/02/254/03/25

!!!Keywords

  • attention
  • domain adaptation
  • multi source domain adaptation
  • object detection

Fingerprint

Dive into the research topics of 'Attention-Based Class-Conditioned Alignment for Multi-Source Domain Adaptation of Object Detectors'. These topics are generated from the title and abstract of the publication. Together, they form a unique fingerprint.

Cite this