Bidirectional Multi-Step Domain Generalization for Visible-Infrared Person Re-Identification

Research output: Contribution to Book/Report typesContribution to conference proceedingspeer-review

1 Citation (Scopus)

Abstract

A key challenge in visible-infrared person re-identification (V-I ReID) is training a backbone model capable of effectively addressing the significant discrepancies across modalities. State-of-the-art methods that generate a single intermediate bridging domain are often less effective, as this generated domain may not adequately capture sufficient common discriminant information. This paper introduces Bidirectional Multi-step Domain Generalization (BMDG), a novel approach for unifying feature representations across diverse modalities. BMDG creates multiple virtual intermediate domains by learning and aligning body part features extracted from both I and V modalities. In particular, our method aims to minimize the cross-modal gap in two steps. First, BMDG aligns modalities in the feature space by learning shared and modality-invariant body part prototypes from V and I images. Then, it generalizes the feature representation by applying bidirectional multi-step learning, which progressively refines feature representations in each step and incorporates more prototypes from both modalities. Based on these prototypes, multiple bridging steps enhance the feature representation. Experiments11Our code is available at: alehdaghi.github.io/BMDG conducted on V-I ReID datasets indicate that our BMDG approach can outperform state-of-the-art part-based and intermediate generation methods, and can be integrated into other part-based methods to enhance their V-I ReID performance.

Original languageEnglish
Title of host publicationProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages763-773
Number of pages11
ISBN (Electronic)9798331510831
DOIs
Publication statusPublished - 2025
Event2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 - Tucson, United States
Duration: 28 Feb 20254 Mar 2025

Publication series

NameProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025

Conference

Conference2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
Country/TerritoryUnited States
CityTucson
Period28/02/254/03/25

Fingerprint

Dive into the research topics of 'Bidirectional Multi-Step Domain Generalization for Visible-Infrared Person Re-Identification'. These topics are generated from the title and abstract of the publication. Together, they form a unique fingerprint.

Cite this