Fault distance estimation for transmission lines with dynamic regressor selection

  • Leandro A. Ensina
  • , Luiz E.S.de Oliveira
  • , Rafael M.O. Cruz
  • , George D.C. Cavalcanti

Research output: Contribution to journalJournal Articlepeer-review

2 Citations (Scopus)

Abstract

The transmission line is one of the most crucial electric power system components, demanding special attention since they are subject to failures that can cause disruptions in energy supply. In this scenario, the fault location emerges as a fundamental task, providing an approximate position where the failure occurred in the line. This paper presents a method for fault location using a novel dynamic regressor selection (DRS) framework, in which we introduce embedded normalization, incorporating the data scaling process inside the framework. The DRS aims to select the most accurate models from a pool of regressors to predict the fault distance. Moreover, since there is a lack of a public dataset, this paper presents and makes a new fault dataset available to the scientific community with several features extracted from current and voltage signals of representative failure events. In our experiments, we demonstrate the importance of this embedded normalization as well as the significance in the variation of critical hyperparameters of the DRS strategy, such as the distance metric used to define the region of competence and the criterion to select the best regressors from the pool of predictors. This work also presents the definition of the oracle concept in DRS, which represents the ideal predictor selection scheme. The results demonstrate the effectiveness of the proposed method with a mean error of 0.7086 km ± 0.0068 km, representing 0.1712% ± 0.0016% of the transmission line extension (414 km).

Original languageEnglish
Pages (from-to)1741-1759
Number of pages19
JournalNeural Computing and Applications
Volume36
Issue number4
DOIs
Publication statusPublished - Feb 2024

!!!Keywords

  • Dynamic selection
  • Ensemble
  • Fault analysis
  • Power transmission

Fingerprint

Dive into the research topics of 'Fault distance estimation for transmission lines with dynamic regressor selection'. These topics are generated from the title and abstract of the publication. Together, they form a unique fingerprint.

Cite this