A Device-Centric and Temporal Learning Framework for Malicious IoT Traffic Detection

  • Mustafa Daraghmeh
  • , Islam Obaidat
  • , Yaser Jararweh
  • , Anjali Agarwal
  • , Kuljeet Kaur

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

The rapid increase of Internet of Things (IoT) devices has introduced substantial security risks, necessitating robust security solutions to detect malicious traffic. In this paper, we propose a machine-learning solution to identify malicious IoT traffic while adhering to the constraints of the IoT environment. Our solution segments network packets into time windows and groups them by source IP. This approach enables the extraction of statistical, behavioral, and entropy-based features that preserve important temporal and device-level characteristics. To address data imbalance, we employ synthetic oversampling (SMOTE), followed by a suite of standard classification models (such as k-nearest Neighbors and Random Forest) calibrated via a sigmoid function to refine probabilistic predictions. Our pipeline is evaluated on Edge-IIoTset, a comprehensive dataset encompassing traffic from multiple IoT devices and 14 different attacks. Results indicate that k-Nearest Neighbors outperforms alternative classifiers, achieving an F1 score of up to 0.8696 and demonstrating high robustness to complex traffic patterns. These findings highlight the effectiveness of time-segmented, IP-based feature aggregation and underline the importance of calibrated classifiers in enhancing IoT network security.

langue originaleAnglais
titre2025 5th Intelligent Cybersecurity Conference, ICSC 2025
rédacteurs en chefMohammad Alsmirat, Fahed Alkhabbas, Muhammad Al-Abdullah, Yaser Jararweh
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages130-136
Nombre de pages7
ISBN (Electronique)9798350392920
Les DOIs
étatPublié - 2025
Evénement5th Intelligent Cybersecurity Conference, ICSC 2025 - Tampa, Etats-Unis
Durée: 19 mai 202522 mai 2025

Série de publications

Nom2025 5th Intelligent Cybersecurity Conference, ICSC 2025

Conférence

Conférence5th Intelligent Cybersecurity Conference, ICSC 2025
Pays/TerritoireEtats-Unis
La villeTampa
période19/05/2522/05/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « A Device-Centric and Temporal Learning Framework for Malicious IoT Traffic Detection ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation