A multi-stage stochastic programming approach for overhaul and supply chain planning of modular physical assets: case study

Résultats de recherche: Contribution à un journalArticle publié dans une revue, révisé par les pairsRevue par des pairs

Résumé

Effective overhaul planning is vital for optimizing performance and cost-efficiency in industrial organizations reliant on physical assets. Focusing on modular subsystems within a closed-loop supply chain, this paper addresses the challenge of determining the optimal timing for overhauling repairable modules to minimize costs, meet deadlines, and ensure asset availability. The closed-loop structure encompasses inventory holding, transportation, and overhaul operations, capturing the interdependencies between logistics, maintenance, and spare parts management. To manage uncertainties from major asset failures and variable demand, a multi-stage stochastic programming model is proposed. A sample average approximation method is employed to address the computational complexity arising from the large scenario space. Real data from a port operator’s asset management case is used to evaluate the model. Results show a potential 17% reduction in total ownership costs. Additionally, the model provides managerial insights, enabling decision-makers to determine the required number of spare units and the level of investment needed to reduce future uncertainty.

langue originaleAnglais
Numéro d'article8
journalOperational Research
Volume26
Numéro de publication1
Les DOIs
étatPublié - janv. 2026

Empreinte digitale

Voici les principaux termes ou expressions associés à « A multi-stage stochastic programming approach for overhaul and supply chain planning of modular physical assets: case study ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation