A Novel Hybrid Machine Learning Model for Rapid Prediction of Urban Wind Flow

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Understanding airflow within urban areas is crucial for ensuring pedestrian comfort, optimizing building ventilation, managing air quality, and evaluating how wind affects structures. Computational Fluid Dynamics (CFD) is a recognized method for simulating wind flow in cities. However, its computational demands related to high-fidelity schemes, such as large eddy simulations (LES), pose a significant challenge, particularly when dealing with probabilistic analysis, risk assessment, and real-time predictions. Moreover, despite the availability of faster CFD simulations like Reynolds-averaged Navier–Stokes (RANS), these low-fidelity (LF) predictions are often inaccurate for simulating wind flow in urban areas. To address these challenges, this study proposes a novel hybrid machine learning model comprising a dimensionality reduction technique and a long short-term memory (LSTM) network. Specifically, proper orthogonal decomposition (POD) is used for dimensionality reduction, and then the time-dependent POD coefficients are obtained via direct projection of the LF and HF signals onto the identified POD basis. An LSTM network is subsequently trained to map the LF POD coefficients to their corresponding HF POD coefficients. To demonstrate the performance of the proposed approach, a simplified case study involving wind flow in an urban area is presented. The analysis confirms that the introduced framework can rapidly and accurately predict HF urban flow.

langue originaleAnglais
titreProceedings of the Canadian Society for Civil Engineering Annual Conference 2024, Volume 14 - Structural Engineering
rédacteurs en chefEhab Elsalakawy, Ahmed Elshaer, Ayman El Ansary
EditeurSpringer Science and Business Media Deutschland GmbH
Pages15-23
Nombre de pages9
ISBN (imprimé)9783032010773
Les DOIs
étatPublié - 2025
EvénementCanadian Society of Civil Engineering Annual Conference, CSCE 2024 - Niagara Falls, Canada
Durée: 5 juin 20247 juin 2024

Série de publications

NomLecture Notes in Civil Engineering
Volume731 LNCE
ISSN (imprimé)2366-2557
ISSN (Electronique)2366-2565

Conférence

ConférenceCanadian Society of Civil Engineering Annual Conference, CSCE 2024
Pays/TerritoireCanada
La villeNiagara Falls
période5/06/247/06/24

Empreinte digitale

Voici les principaux termes ou expressions associés à « A Novel Hybrid Machine Learning Model for Rapid Prediction of Urban Wind Flow ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation