A Novel Hybrid ML Approach for Powerline - Vegetation Encroachment Area Identification

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

1 Citation (Scopus)

Résumé

Accurate and timely identification of vegetation encroachment is essential for powerline monitoring to mitigate outage risks of the electrical infrastructure. Vegetation growth near powerlines poses increasing hazards with proximity, thus necessitating routine inspections to identify high-risk zones. Ad-vances in unmanned aerial vehicles (UAV s) capable of capturing high-resolution aerial images, combined with machine learning (ML), have significantly improved powerline and vegetation detection. Moreover, the recent adoption of transformer-based architectures offers new venues for image segmentation tasks. In this work, we propose a novel hybrid segmentation approach that combines the strengths of traditional convolutional neural networks (CNNs) and transformer-based models, particularly U-Net and SegFormer, through meta-learning for powerline and vegetation detection and encroachment identification. Through extensive experimental evaluation, we prove that the proposed approach achieves an Intersection over Union (IoU) score of 86 % for powerline detection (resp. 94 % for vegetation detection), outperforming (resp. similar to) the IoU scores of standalone U-Net and SegFormer (IoU of standalone SegFormer). Our approach serves as an efficient preliminary assessment tool for powerline-vegetation encroachment identification.

langue originaleAnglais
titre2025 IEEE 34th International Symposium on Industrial Electronics, ISIE 2025
EditeurInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronique)9798350374797
Les DOIs
étatPublié - 2025
Evénement34th IEEE International Symposium on Industrial Electronics, ISIE 2025 - Toronto, Canada
Durée: 20 juin 202523 juin 2025

Série de publications

NomIEEE International Symposium on Industrial Electronics
ISSN (imprimé)2163-5137
ISSN (Electronique)2163-5145

Conférence

Conférence34th IEEE International Symposium on Industrial Electronics, ISIE 2025
Pays/TerritoireCanada
La villeToronto
période20/06/2523/06/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « A Novel Hybrid ML Approach for Powerline - Vegetation Encroachment Area Identification ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation