Adaptive Embedded Machine Learning on IoT Devices: A Review

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Embedded Machine Learning (EML) refers to the ability of machine learning models deployed on resource-constrained Internet of Things (IoT) devices to maintain performance over time by adjusting to evolving data distributions and operating conditions. Unlike static models, adaptive EML enables IoT devices to cope with the challenges of dynamic environments, such as concept drift, changing user behavior, and environmental conditions variability. This survey provides a focused overview of recent efforts to enable adaptation in EML, exploring different approaches from system-level strategies like over-the-air (OTA) model update or by directly enabling on-device training of Machine learning (ML) models. We also highlight different learning paradigms, including online learning, continual learning, and meta-learning, that shall improve adaptability in EML. This work synthesizes representative advances in the field and aims to raise awareness of adaptability as a critical but underexplored dimension of EML research. By highlighting key gaps, such as limited time-series adaptation and lack of standardized evaluation, the paper encourages deeper investigation into adaptive mechanisms to support the continued growth of intelligent, resilient, and reliable IoT systems.

langue originaleAnglais
titre2025 International Telecommunications Conference, ITC-Egypt 2025
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages553-560
Nombre de pages8
ISBN (Electronique)9781665458009
Les DOIs
étatPublié - 2025
Evénement2025 International Telecommunications Conference, ITC-Egypt 2025 - Cairo, Egypte
Durée: 28 juil. 202531 juil. 2025

Série de publications

Nom2025 International Telecommunications Conference, ITC-Egypt 2025

Conférence

Conférence2025 International Telecommunications Conference, ITC-Egypt 2025
Pays/TerritoireEgypte
La villeCairo
période28/07/2531/07/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Adaptive Embedded Machine Learning on IoT Devices: A Review ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation