Advanced Predictive Process Control for Industrial Thickeners

  • Mouna El Hamrani
  • , Khalid Benjelloun
  • , Jean Pierre Kenne
  • , Saad Maarouf
  • , Mohamed Elkhouakhi

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Efficient control of industrial thickeners is crucial for optimizing solid-liquid separation processes, especially in fields like mining and wastewater treatment. Traditional model predictive control (MPC) strategies, even though useful in most applications, can face trouble trying to maintain their performance when faced with time-varying dynamics due to factors such as wear and tear of equipment or changes in feed properties. To address these limitations, this paper highlights an adaptive model predictive control (AMPC) strategy that uses real-time parameter identification to update the prediction model of the usual MPC algorithm. The results show that while AMPC improves the robustness of the controller significantly, keeping critical process parameters such as slurry density well within operational limits under changing conditions, it still faces a number of challenges. AMPC struggles to compensate for unknown disturbances or to optimize flocculant consumption, resulting in economic problems. These results suggest that, despite the improvements offered by AMPC, further research is required to develop advanced disturbance rejection mechanisms and incorporate flocculant optimization strategies for more efficient and cost-effective performances.

langue originaleAnglais
titreProceedings of the 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2025
rédacteurs en chefXin-She Yang, Alexis Drogoul, Gerd Wagner
EditeurScience and Technology Publications, Lda
Pages262-269
Nombre de pages8
ISBN (imprimé)9789897587597
Les DOIs
étatPublié - 2025
Evénement15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2025 - Bilbao, Espagne
Durée: 11 juin 202513 juin 2025

Série de publications

NomProceedings of the International Conference on Simulation and Modeling Methodologies, Technologies and Applications
Volume1
ISSN (imprimé)2184-2841

Conférence

Conférence15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2025
Pays/TerritoireEspagne
La villeBilbao
période11/06/2513/06/25

SDG des Nations Unies

Ce résultat contribue à ou aux Objectifs de développement durable suivants

  1. SDG 6 – Eau propre et assainissement
    SDG 6 – Eau propre et assainissement
  2. SDG 9 – Industrie, innovation et infrastructure
    SDG 9 – Industrie, innovation et infrastructure

Empreinte digitale

Voici les principaux termes ou expressions associés à « Advanced Predictive Process Control for Industrial Thickeners ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation