AeroPowerNet: Fixed-Wing UAV Power Consumption Estimation with an AI-Driven Hybrid Deep Learning Framework

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

The instantaneous power consumption of electric-powered aerial vehicles in the aviation industry is crucial for optimizing flight activities. However, devising physics-based power consumption models requires deep insight into the dynamics of an unmanned aerial vehicle (UAV). This becomes challenging due to the variability and complexity of the parameters of airspeed, altitude, and motion of the flight controls. Therefore, a power consumption model is needed to map the influence of flight parameters on power utilization during varying flight phases. This model is crucial for mission planning, optimization, and extending the endurance of UAVs. This study introduces the AeroPowerNet framework, employing a data-driven approach based on deep learning to model UAV power consumption utilizing real-world flight data, which can serve as a foundation for future integration into fixed-wing UAV flight operations. We implemented a test of four different models: RNN-LSTM, GRU, Transformer, and a hybrid model, which were trained and compared. Experimental results show that the hybrid model outperforms all other models, achieving the best performance with MAE of 3.38W, R2 of 99.31%, and NRMSE of 0.21% for the first UAV flight, and an MAE of 7.52W, R2 of 96.68%, and NRMSE of 1.03% for the second flight.

langue originaleAnglais
titre2025 IEEE 21st International Conference on Automation Science and Engineering, CASE 2025
EditeurIEEE Computer Society
Pages192-197
Nombre de pages6
ISBN (Electronique)9798331522469
Les DOIs
étatPublié - 2025
Evénement21st IEEE International Conference on Automation Science and Engineering, CASE 2025 - Los Angeles, Etats-Unis
Durée: 17 août 202521 août 2025

Série de publications

NomIEEE International Conference on Automation Science and Engineering
ISSN (imprimé)2161-8070
ISSN (Electronique)2161-8089

Conférence

Conférence21st IEEE International Conference on Automation Science and Engineering, CASE 2025
Pays/TerritoireEtats-Unis
La villeLos Angeles
période17/08/2521/08/25

SDG des Nations Unies

Ce résultat contribue à ou aux Objectifs de développement durable suivants

  1. SDG 7 – Energie propre et d'un coût abordable
    SDG 7 – Energie propre et d'un coût abordable

Empreinte digitale

Voici les principaux termes ou expressions associés à « AeroPowerNet: Fixed-Wing UAV Power Consumption Estimation with an AI-Driven Hybrid Deep Learning Framework ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation