Résumé
This paper introduces a novel approach to AI-powered digital-twins-assisted robotic control in automated warehouses, integrating the kinetic models of robots with real-time synchronization of digital-twins. The proposed framework utilizes Ultra-Reliable Low-Latency Communication (URLLC) over 5G networks to enable seamless interaction between the physical robots and AI-driven models in the cyber twin. We formulate an optimization problem aimed at minimizing energy consumption during digital-twins-driven robotic operations, thereby enhancing both operational efficiency and energy efficiency. A Deep Reinforcement Learning (DRL)-based approach is developed for the adaptive learning of the AI models in the cyber twin, facilitating autonomous simulation and real-time decision-making for efficient robotic control. Additionally, we propose a game-theory-based resource allocation strategy to optimize the distribution of computational resources for continuous and adaptive learning within AI models. Numerical results demonstrate that the proposed game-based resource allocation scheme achieves Nash equilibrium, significantly improving performance in terms of energy consumption and resource utilization compared to the state-of-the-art DRL-based resource allocation scheme.
| langue originale | Anglais |
|---|---|
| Pages (de - à) | 3347-3361 |
| Nombre de pages | 15 |
| journal | IEEE Journal on Selected Areas in Communications |
| Volume | 43 |
| Numéro de publication | 10 |
| Les DOIs | |
| état | Publié - 2025 |
SDG des Nations Unies
Ce résultat contribue à ou aux Objectifs de développement durable suivants
-
SDG 7 – Energie propre et d'un coût abordable
-
SDG 9 – Industrie, innovation et infrastructure
Empreinte digitale
Voici les principaux termes ou expressions associés à « AI-Powered Digital Twins for Robotic Control in 5G-Enabled Industrial Automation ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.Contient cette citation
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver