Anatomically-Focused Patches for Lightweight and Explainable Knee OA Grading

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Current deep learning models for knee osteoarthritis (OA) grading often lack anatomical guidance, limiting their accuracy and explainability. This work proposes a novel framework centered on anatomically-focused patches to overcome these limitations. Our method extracts a set of small image patches from clinically-relevant locations along the joint line, identified by automated landmark detection. These patches are then processed as a bag of instances within an attention-based multiple instance learning (MIL) framework. The MIL model learns to identify and weight the most salient pathological features for an accurate, patient-level diagnosis. Our approach is evaluated on the OAI dataset and achieves state-of-the-art performance with a quadratic weighted Cohen’s Kappa of 0.807. This result outperforms larger baselines such as ResNet-34 while using over 85 times fewer parameters. Furthermore, our attention-weighted visualization method produces sharp, clinically meaningful saliency maps that precisely localize features such as osteophytes and joint space narrowing, in contrast to the diffuse heatmaps of prior work. By combining anatomical guidance with an MIL framework, our work presents a lightweight, accurate and trustworthy solution for automated knee OA grading. The code is available at: https://github.com/tien-endotchang/focused-patch-KOA.

langue originaleAnglais
titreShape in Medical Imaging - International Workshop, ShapeMI 2025, Held in Conjunction with MICCAI 2025, Proceedings
rédacteurs en chefChristian Wachinger, Gijs Luijten, Jan Egger, Shireen Elhabian, Karthik Gopinath
EditeurSpringer Science and Business Media Deutschland GmbH
Pages74-86
Nombre de pages13
ISBN (imprimé)9783032067739
Les DOIs
étatPublié - 2026
Modification externeOui
EvénementInternational Workshop on Shape in Medical Imaging, ShapeMI 2025, Held in Conjunction with the 28th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2025 - Daejeon, Corée du Sud
Durée: 23 sept. 202523 sept. 2025

Série de publications

NomLecture Notes in Computer Science
Volume16171 LNCS
ISSN (imprimé)0302-9743
ISSN (Electronique)1611-3349

Conférence

ConférenceInternational Workshop on Shape in Medical Imaging, ShapeMI 2025, Held in Conjunction with the 28th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2025
Pays/TerritoireCorée du Sud
La villeDaejeon
période23/09/2523/09/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Anatomically-Focused Patches for Lightweight and Explainable Knee OA Grading ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation