Résumé
An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.
| langue originale | Anglais |
|---|---|
| Pages (de - à) | 104-108 |
| Nombre de pages | 5 |
| journal | Healthcare Technology Letters |
| Volume | 1 |
| Numéro de publication | 4 |
| Les DOIs | |
| état | Publié - oct. 2014 |
Empreinte digitale
Voici les principaux termes ou expressions associés à « Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.Contient cette citation
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver