Automating clash relevance filtering in BIM-based multidisciplinary coordination using machine learning

Résultats de recherche: Contribution à un journalArticle publié dans une revue, révisé par les pairsRevue par des pairs

Résumé

In a context where Machine Learning (ML) is reshaping the construction industry and where normative frameworks such as ISO 19650 govern BIM data management, this paper aims to automate the filtering of true and false clashes in 3D models coordination process, using machine learning (ML). A metadata extraction plug-in is developed to gather the necessary data for training ML models. Tests are conducted on BIM models to evaluate the plug-in's ability to identify and classify clashes, followed by a reimplementation of the solution within an existing BIM software environment. Validation, carried out through both technical testing and feedback from industry professionals, demonstrates the plug-in's functionality and its ability to replicate the decision-making process of a BIM coordinator in clash filtering. Intended for construction professionals this paper highlights the potential of AI to enhance BIM quality control while complying with regulatory standards and meeting the practical needs of the industry.

langue originaleAnglais
Numéro d'article106644
journalAutomation in Construction
Volume181
Les DOIs
étatPublié - janv. 2026

Empreinte digitale

Voici les principaux termes ou expressions associés à « Automating clash relevance filtering in BIM-based multidisciplinary coordination using machine learning ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation