Résumé
Federated learning (FL) has emerged as a promising paradigm for decentralized machine learning, enabling clients to collaboratively train models while keeping their data private. However, a key challenge in FL is the centralized aggregation of model updates, which can lead to inefficiencies and vulnerabilities, especially when data privacy is critical. This study presents a pioneering federated learning framework, BlockFed, which leverages a novel hierarchical aggregation approach to empower clients in collaboratively generating a global model through multiple levels of aggregation. A unique role definition mechanism is integrated to delineate clients' roles and tasks in each learning round. Additionally, BlockFed incorporates the Particle Swarm Optimization (PSO) algorithm to solve an optimization problem for determining optimal weights in the weighted averaging aggregation, enabling faster convergence. To ensure secure and decentralized storage, IPFS and blockchain technologies are used to store local models and their corresponding hash pointers. The efficacy of BlockFed is evaluated using a genomic breast cancer dataset sourced from the GDC portal, achieving a remarkable 98% accuracy for the global model and demonstrating enhanced accuracy and convergence speed over the original framework.
| langue originale | Anglais |
|---|---|
| titre | DEBS 2025 - Proceedings of the 19th ACM International Conference on Distributed and Event-Based Systems |
| Editeur | Association for Computing Machinery, Inc |
| Pages | 134-145 |
| Nombre de pages | 12 |
| ISBN (Electronique) | 9798400713323 |
| Les DOIs | |
| état | Publié - 9 juin 2025 |
| Evénement | 19th ACM International Conference on Distributed and Event-Based Systems, DEBS 2025 - Gothenburg, Suède Durée: 10 juin 2025 → 13 juin 2025 |
Série de publications
| Nom | DEBS 2025 - Proceedings of the 19th ACM International Conference on Distributed and Event-Based Systems |
|---|
Conférence
| Conférence | 19th ACM International Conference on Distributed and Event-Based Systems, DEBS 2025 |
|---|---|
| Pays/Territoire | Suède |
| La ville | Gothenburg |
| période | 10/06/25 → 13/06/25 |
SDG des Nations Unies
Ce résultat contribue à ou aux Objectifs de développement durable suivants
-
SDG 3 – Bonne santé et bien-être
Empreinte digitale
Voici les principaux termes ou expressions associés à « BlockFed: A Novel Federated Learning Framework Based On Hierarchical Weighted Aggregation ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.Contient cette citation
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver