Cardiac Monitoring with Textile Capacitive Electrodes in Driving Applications: Characterization of Signal Quality and RR Duration Accuracy

  • James Elber Duverger
  • , Geordi Gabriel Renaud Dumoulin
  • , Victor Bellemin
  • , Patricia Forcier
  • , Justine Decaens
  • , Ghyslain Gagnon
  • , Alireza Saidi

Résultats de recherche: Contribution à un journalArticle publié dans une revue, révisé par les pairsRevue par des pairs

1 Citation (Scopus)

Résumé

Capacitive ECG sensors in automobiles enable unobtrusive heart rate monitoring as an indicator of a driver’s alertness and health. This paper introduces a capacitive sensor with textile electrodes and provides insights into signal quality and RR duration accuracy. Electrodes of various shapes, sizes, and fabrics were integrated at various positions into the seat back of a driving simulator car seat. Seven subjects completed identical driving circuits with their cardiac signals being recorded simultaneously with textile electrodes and reference Ag-AgCl electrodes. Capacitive ECG signals with observable R peaks (after filtering) could be captured with almost all pairs of textile electrodes, independently of design or placement. Signal quality from textile electrodes was consistently lower compared with reference Ag-AgCl electrodes. Proximity to the heart or even contact with the body seems to be key but not enough to improve signal quality. However, accurate measurement of RR durations was mostly independent of signal quality since 90% of all RR durations measured on capacitive ECG signals had a percentage error below 5% compared to reference ECG signals. Accuracy was actually algorithm-dependent, where a classic Pan–Tompkins-based algorithm was interestingly outperformed by an in-house frequency-domain algorithm.

langue originaleAnglais
Numéro d'article6097
journalSensors
Volume25
Numéro de publication19
Les DOIs
étatPublié - oct. 2025

Empreinte digitale

Voici les principaux termes ou expressions associés à « Cardiac Monitoring with Textile Capacitive Electrodes in Driving Applications: Characterization of Signal Quality and RR Duration Accuracy ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation