Clustering of radio emitter characteristics with complex-valued CNNs

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Radio emitter identification has applications in the Internet of Things, spectrum monitoring and communication network security for the detection of emitters and for identification and authentication of transmission sources. Convolutional Neural Networks (CNNs) can learn the features of a signal from raw in-phase and quadrature (I/Q) samples for classification but can also extract the features of signals when used in inference. A CNN trained on signals from known emitters can extract the features of signals from unknown emitters. The extracted features when fed to a clustering algorithm can allow to group signals according to their emitters. This unsupervised learning technique can then identify signals from emitters unseen during training. Recently, models of complex-valued neural networks have demonstrated superior performance on data containing phase information in a variety of fields. This work aims to assess the ability of complex-valued neural networks to distinguish emitters unseen during training by comparing them to their real-valued counterparts. Our results indicate that complex-valued CNNs are superior to real-valued CNNs when trained with signals from emitters with similar extracted features.

langue originaleAnglais
titre2024 IEEE Canadian Conference on Electrical and Computer Engineering, CCECE 2024
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages283-288
Nombre de pages6
ISBN (Electronique)9798350371628
Les DOIs
étatPublié - 2024
Evénement2024 Annual IEEE Canadian Conference on Electrical and Computer Engineering, CCECE 2024 - Kingston, Canada
Durée: 6 août 20249 août 2024

Série de publications

NomCanadian Conference on Electrical and Computer Engineering
ISSN (imprimé)0840-7789

Conférence

Conférence2024 Annual IEEE Canadian Conference on Electrical and Computer Engineering, CCECE 2024
Pays/TerritoireCanada
La villeKingston
période6/08/249/08/24

Empreinte digitale

Voici les principaux termes ou expressions associés à « Clustering of radio emitter characteristics with complex-valued CNNs ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation