Data Augmentation and Class Imbalance Compensation Using CTGAN to Improve Gas Detection Systems

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

5 Citations (Scopus)

Résumé

The use of sensors in gas detection systems for environmental monitoring is largely affected by sensor drift over time which reduces accurate classification. This drift can be minimized by using machine learning models trained on sensor data. Here, two different machine learning models are trained on the Gas Sensor Array Drift Dataset. However, this dataset, which has been collected over three years, suffers not only from drift but also from class imbalance. As a result, machine learning models cannot perform properly on this dataset. To address these problems, this paper introduces an innovative methodology for data compensation and augmentation using Conditional Tabular Generative Adversarial Networks (CTGAN). By employing this methodology, we can counteract the class imbalance and limit drift by bringing diversity to the dataset, which in turn improves the accuracy of machine learning models for gas detection systems. With class imbalance compensation, Multi-Layer Perceptron (MLP) and Support Vector Machines (SVM) achieved an improvement in classification accuracy in five batches, up to 20% for certain batches. Through data augmentation, they reached higher accuracy across six batches, with certain batches exceeding a 10% improvement. These achievements highlight the effectiveness and reliability of the use of synthetic data generation in tabular data for sensors.

langue originaleAnglais
titreI2MTC 2024 - Instrumentation and Measurement Technology Conference
Sous-titreInstrumentation and Measurement for Sustainable Future, Proceedings
EditeurInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronique)9798350380903
Les DOIs
étatPublié - 2024
Evénement2024 IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2024 - Glasgow, Royaume-Uni
Durée: 20 mai 202423 mai 2024

Série de publications

NomConference Record - IEEE Instrumentation and Measurement Technology Conference
ISSN (imprimé)1091-5281

Conférence

Conférence2024 IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2024
Pays/TerritoireRoyaume-Uni
La villeGlasgow
période20/05/2423/05/24

Empreinte digitale

Voici les principaux termes ou expressions associés à « Data Augmentation and Class Imbalance Compensation Using CTGAN to Improve Gas Detection Systems ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation