Developing A New Adaptive Optimal k-Nearest Neighbor Methodology for Flight Test Data Anomaly Detection – Application to Business Aircraft

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

2 Citations (Scopus)

Résumé

The advancement of flight data analysis algorithms for improving the operational safety and efficiency of the aviation industry is always vital. This paper presents a novel adaptive optimal k-Nearest Neighbor (kNN) algorithm designed to detect anomalies in flight test data. This enhanced methodology addresses the limitations of traditional kNN algorithms by optimizing number of neighbours and designing an adaptive threshold mechanism that dynamically adjusts to the noise and outlier characteristics inherent in-flight data. The proposed approach not only improves the detection accuracy but also adapts to the changing dynamics of flight data, ensuring high sensitivity and specificity in anomaly identification. Through rigorous testing on longitudinal trim condition data, the algorithm demonstrates very good performance in recognizing spikes and failures that could indicate potential safety risks.

langue originaleAnglais
titreAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025
EditeurAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (imprimé)9781624107238
Les DOIs
étatPublié - 2025
Modification externeOui
EvénementAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025 - Orlando, Etats-Unis
Durée: 6 janv. 202510 janv. 2025

Série de publications

NomAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025

Conférence

ConférenceAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025
Pays/TerritoireEtats-Unis
La villeOrlando
période6/01/2510/01/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Developing A New Adaptive Optimal k-Nearest Neighbor Methodology for Flight Test Data Anomaly Detection – Application to Business Aircraft ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation