Efficient Detection of Intermittent Job Failures Using Few-Shot Learning

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

One of the main challenges developers face in the use of continuous integration (CI) and deployment pipelines is the occurrence of intermittent job failures, which result from unexpected non-deterministic issues (e.g., flaky tests or infrastructure problems) rather than regular code-related errors such as bugs. Prior studies developed machine learning (ML) models trained on large datasets of job logs to classify job failures as either intermittent or regular. As an alternative to costly manual labeling of large datasets, the state-of-the-art (SOTA) approach leveraged a heuristic based on non-deterministic job reruns. However, this method mislabels intermittent job failures as regular in contexts where rerunning suspicious job failures is not an explicit policy, and therefore limits the SOTA's performance in practice. In fact, our manual analysis of 2,125 job failures from 5 industrial and 1 open-source projects reveals that, on average, 32 % of intermittent job failures are mislabeled as regular. To address these limitations, this paper introduces a novel approach to intermittent job failure detection using fewshot learning (FSL). Specifically, we fine-tune a small language model using a few number of manually labeled log examples to generate rich embeddings, which are then used to train an ML classification head. Our FSL-based approach achieves 70 - 88% F1-score with only 12 shots in all projects, outperforming the SOTA, which proved ineffective (34-52% F1-score) in 4 projects. Overall, this study underlines the importance of data quality over quantity and provides a more efficient and practical framework for the detection of intermittent job failures in organizations.

langue originaleAnglais
titreProceedings - 2025 IEEE International Conference on Software Maintenance and Evolution, ICSME 2025
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages632-643
Nombre de pages12
ISBN (Electronique)9798331595876
Les DOIs
étatPublié - 2025
Evénement41st IEEE International Conference on Software Maintenance and Evolution, ICSME 2025 - Auckland, Nouvelle-Zélande
Durée: 7 sept. 202512 sept. 2025

Série de publications

NomProceedings - 2025 IEEE International Conference on Software Maintenance and Evolution, ICSME 2025

Conférence

Conférence41st IEEE International Conference on Software Maintenance and Evolution, ICSME 2025
Pays/TerritoireNouvelle-Zélande
La villeAuckland
période7/09/2512/09/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Efficient Detection of Intermittent Job Failures Using Few-Shot Learning ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation