Energy-Efficient Vehicular Task Offloading Using Multi-Mode MEC and RIS-Equipped Aerial Platforms

Résultats de recherche: Contribution à un journalArticle publié dans une revue, révisé par les pairsRevue par des pairs

1 Citation (Scopus)

Résumé

Connected and Autonomous Vehicles (CAVs) require ultra-low latency and high computational processing for safety-critical applications, often exceeding their on-board capabilities and facing significant coverage limitations with existing terrestrial infrastructure. To address these challenges, mobile edge computing (MEC)-equipped non-terrestrial networks (NTNs) offer a promising solution for vehicular task offloading. In this context, we introduce here a novel and energy-efficient approach to optimize MEC-equipped NTN operations through the integration of reconfigurable intelligent surfaces (RIS) into NTNs, thus enhancing the performance of CAV task offloading. Our framework leverages a multi-layered cooperative architecture that combines the wide-area coverage of high-altitude platform stations (HAPS) with the flexibility of multi-mode unmanned aerial vehicles (UAVs) equipped with both MEC and RIS capabilities. Specifically, we formulate this as a joint optimization problem of task/sub-task association, RIS phase shift configurations, and power control, to maximize the CAV task offloading success rate while saving energy within the NTN nodes. Given the latter’s NP-hardness, we divide it into three separate sub-problems and solve them iteratively. Specifically, task/sub-task association decisions are addressed by transforming the mixed-integer nonlinear programming (MINLP) sub-problem, and the RIS configurations are optimized using a hybrid solution combining semidefinite programming (SDP) and successive convex approximation (SCA), while a closed-form solution is derived for UAV/HAPS power control. Through extensive experiments, our proposed iterative solution, called joint offloading, phase shift, and power optimization (JOPPO), is proven to be superior to benchmarks in terms of task offloading success rate and across different network conditions while trading-off between energy consumption and task offloading success rate.

langue originaleAnglais
Pages (de - à)7604-7619
Nombre de pages16
journalIEEE Open Journal of the Communications Society
Volume6
Les DOIs
étatPublié - 2025
Modification externeOui

SDG des Nations Unies

Ce résultat contribue à ou aux Objectifs de développement durable suivants

  1. SDG 7 – Energie propre et d'un coût abordable
    SDG 7 – Energie propre et d'un coût abordable
  2. SDG 9 – Industrie, innovation et infrastructure
    SDG 9 – Industrie, innovation et infrastructure

Empreinte digitale

Voici les principaux termes ou expressions associés à « Energy-Efficient Vehicular Task Offloading Using Multi-Mode MEC and RIS-Equipped Aerial Platforms ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation