Enhancing Autonomy of Context-Aware Self-healing in Fog Native Environments

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Detecting intrusions, ensuring effective operation, autono-mous response, and continuous monitoring present significant challenges for the widespread adoption of the Internet of Things (IoT). Recent research has delved into incorporating machine learning techniques, such as Hidden Hierarchical Markov Models (HHMM), to imbue IoT networks with context-aware self-healing capabilities, aiming to tackle these obstacles. These investigations underscore the pivotal role of context-aware and automated intrusion detection systems (IDS) in identifying and mitigating security vulnerabilities within IoT environments. In addition, recent studies have concentrated on creating self-healing methodologies capable of dynamically adjusting response plans, thus diminishing human intervention and ameliorating real-time security concerns. Such autonomous response capabilities are indispensable for enhancing the security, resilience, and autonomy of IoT systems. To address these imperatives, this article introduces context-aware self-healing mechanisms leveraging HHMM, machine learning algorithms, cybersecurity methodologies, and standardized self-healing protocols. The proposed approach involves the development of a monitoring application that autonomously gathers system information, applies our detection strategy, and adapts to evolving network conditions over time. The experimental validation conducted on our platform shows promising results, affirming the efficacy and viability of the proposed solution. This comprehensive approach promises to fortify IoT systems against emerging threats, enhancing their adaptability and robustness in dynamic environments.

langue originaleAnglais
titreFoundations and Practice of Security - 17th International Symposium, FPS 2024, Revised Selected Papers
rédacteurs en chefKamel Adi, Simon Bourdeau, Christel Durand, Valérie Viet Triem Tong, Alina Dulipovici, Yvon Kermarrec, Joaquin Garcia-Alfaro
EditeurSpringer Science and Business Media Deutschland GmbH
Pages336-350
Nombre de pages15
ISBN (imprimé)9783031874987
Les DOIs
étatPublié - 2025
Evénement17th International Symposium on Foundations and Practice of Security, FPS 2024 - Montréal, Canada
Durée: 9 déc. 202411 déc. 2024

Série de publications

NomLecture Notes in Computer Science
Volume15532 LNCS
ISSN (imprimé)0302-9743
ISSN (Electronique)1611-3349

Conférence

Conférence17th International Symposium on Foundations and Practice of Security, FPS 2024
Pays/TerritoireCanada
La villeMontréal
période9/12/2411/12/24

Empreinte digitale

Voici les principaux termes ou expressions associés à « Enhancing Autonomy of Context-Aware Self-healing in Fog Native Environments ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation