Enhancing Traffic Load Forecasting in 5G Networks: A Statistical and Temporal Feature Engineering Approach

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

The rapid advancement of 5G technology has significantly increased energy consumption, underscoring the need for advanced energy management solutions. Proactive energy management, which relies on accurate predictions of network load to enable timely adaptive actions, emerges as a key strategy in addressing this challenge. In this study, we introduce a refined approach to forecasting traffic load in 5G networks, emphasizing the integration of statistical and temporal feature engineering. This methodology is aimed at capturing the intricate spatial and temporal patterns inherent in network data, thereby enhancing prediction accuracy. Leveraging an existing dataset comprising measurements from 1,000 base stations, we enriched this dataset with a set of derived features that reflect both temporal dynamics and load characteristics. Utilizing this enriched dataset, we trained and validated a suite of predictive models. Our findings reveal a notable improvement in the accuracy of traffic load predictions, outperforming standard baseline models. This underscores the effectiveness of our feature engineering approach in refining the predictive capabilities of models, paving the way for more efficient and proactive energy management in 5G networks.

langue originaleAnglais
titre20th International Wireless Communications and Mobile Computing Conference, IWCMC 2024
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages1661-1667
Nombre de pages7
ISBN (Electronique)9798350361261
Les DOIs
étatPublié - 2024
Evénement20th IEEE International Wireless Communications and Mobile Computing Conference, IWCMC 2024 - Hybrid, Ayia Napa, Chypre
Durée: 27 mai 202431 mai 2024

Série de publications

Nom20th International Wireless Communications and Mobile Computing Conference, IWCMC 2024

Conférence

Conférence20th IEEE International Wireless Communications and Mobile Computing Conference, IWCMC 2024
Pays/TerritoireChypre
La villeHybrid, Ayia Napa
période27/05/2431/05/24

Empreinte digitale

Voici les principaux termes ou expressions associés à « Enhancing Traffic Load Forecasting in 5G Networks: A Statistical and Temporal Feature Engineering Approach ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation