Evaluating the Scalability and Suitability of Deep Learning Models for Energy Consumption Forecasting in Smart Homes

  • David Attipoe
  • , Donatien Koulla Moulla
  • , Sree Ganesh Thottempudi
  • , Lateef Adesola Akinyemi
  • , Jelil Olatunbosun Agbo-Ajala
  • , Olufisayo Sunday Ekundayo
  • , Ernest Mnkandla
  • , Alain Abran

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Effective energy consumption forecasting in smart homes is vital for optimising resource usage and integrating renewable energy sources. Current research is often hindered by factors such as limited or low quality data, the challenge of identifying suitable prediction models, the variability of consumption patterns, and the scalability limitations of these models. In this study, we examine the scalability and performance of three advanced machine learning frameworks: Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Artificial Neural Networks (ANNs) for short-term energy consumption forecasting across multiple dataset sizes. Specifically, it used four generated datasets representing 20, 50, 100, and 200 smart homes, each covering 365 days of energy consumption data. We assess how well each model adapts to growing dataset sizes by measuring root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), training time, and inference speed. We examine the models’ ability to generalize from smaller to larger datasets and their suitability to capture diverse consumption patterns in different household datasets. In addition, we assess the resource and time efficiency of each model. Our findings show that ANN models deliver reliable and precise predictions for energy consumption, making them particularly suitable for both residential-scale and city-wide smart energy management.

langue originaleAnglais
titreProceedings of 10th International Congress on Information and Communication Technology - ICICT 2025, London
rédacteurs en chefXin-She Yang, R. Simon Sherratt, Nilanjan Dey, Amit Joshi
EditeurSpringer Science and Business Media Deutschland GmbH
Pages583-598
Nombre de pages16
ISBN (imprimé)9789819669318
Les DOIs
étatPublié - 2025
Evénement10th International Congress on Information and Communication Technology, ICICT 2025 - London, Royaume-Uni
Durée: 18 févr. 202521 févr. 2025

Série de publications

NomLecture Notes in Networks and Systems
Volume1444 LNNS
ISSN (imprimé)2367-3370
ISSN (Electronique)2367-3389

Conférence

Conférence10th International Congress on Information and Communication Technology, ICICT 2025
Pays/TerritoireRoyaume-Uni
La villeLondon
période18/02/2521/02/25

SDG des Nations Unies

Ce résultat contribue à ou aux Objectifs de développement durable suivants

  1. SDG 7 – Energie propre et d'un coût abordable
    SDG 7 – Energie propre et d'un coût abordable

Empreinte digitale

Voici les principaux termes ou expressions associés à « Evaluating the Scalability and Suitability of Deep Learning Models for Energy Consumption Forecasting in Smart Homes ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation