FEDORA: Federated Ensemble Reinforcement Learning for DAG-Based Task Offloading and Resource Allocation in MEC

Résultats de recherche: Contribution à un journalArticle publié dans une revue, révisé par les pairsRevue par des pairs

1 Citation (Scopus)

Résumé

The increasing demand for compute intensive Internet of Things (IoT) applications has accelerated the adoption of multiaccess-edge computing (MEC) to offload tasks from resource constrained devices to edge servers. However, making optimal offloading decisions in multiuser MEC environments is challenging due to the dependencies between tasks, resource constraints, and the need to preserve user privacy. In this work, we propose FEDORA, a federated ensemble reinforcement learning framework for directed acyclic graph (DAG)-based task Offloading and resource allocation in MEC environments, that integrates twin delayed deep deterministic policy gradient (TD3) for continuous resource allocation and multihead deep Q-networks (DQNs) for discrete offloading decisions. To handle task dependencies, we model applications as DAGs and generate feature embeddings for offloading decisions. Our federated learning (FL) approach uses local training at MEC level and periodic model aggregation at a global server to preserve data privacy. Finally, extensive simulations across different DAG topologies demonstrate that FEDORA reduces system costs and improves task completion rates compared to state-of-the-art baselines, including FL-DQN, FL-DDPG, FedAvg, FedNova, and SCAFFOLD, highlighting its scalability and robustness in large scale MEC deployments.

langue originaleAnglais
Pages (de - à)44228-44242
Nombre de pages15
journalIEEE Internet of Things Journal
Volume12
Numéro de publication21
Les DOIs
étatPublié - 2025
Modification externeOui

SDG des Nations Unies

Ce résultat contribue à ou aux Objectifs de développement durable suivants

  1. SDG 7 – Energie propre et d'un coût abordable
    SDG 7 – Energie propre et d'un coût abordable

Empreinte digitale

Voici les principaux termes ou expressions associés à « FEDORA: Federated Ensemble Reinforcement Learning for DAG-Based Task Offloading and Resource Allocation in MEC ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation