Imbalanced malware classification: an approach based on dynamic classifier selection

  • Jose Vinicius S. Souza
  • , Camila Barbosa Vieira
  • , George D.C. Cavalcanti
  • , Rafael M.O. Cruz

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

In recent years, the rise of cyber threats has emphasized the need for robust malware detection systems, especially on mobile devices. Malware, which targets vulnerabilities in devices and user data, represents a substantial security risk. A significant challenge in malware detection is the imbalance in datasets, where most applications are benign, with only a small fraction posing a threat. This study addresses the often-overlooked issue of class imbalance in malware detection by evaluating various machine learning strategies for detecting malware in Android applications. We assess monolithic classifiers and ensemble methods, focusing on dynamic selection algorithms, which have shown superior performance compared to traditional approaches. In contrast to balancing strategies performed on the whole dataset, we propose a balancing procedure that works individually for each classifier in the pool. Our empirical analysis demonstrates that the KNOP algorithm obtained the best results using a pool of Random Forest. Additionally, an instance hardness assessment revealed that balancing reduces the difficulty of the minority class and enhances the detection of the minority class (malware). The code used for the experiments is available at https://github.com/jvss2/Machine-Learning-Empirical-Evaluation.

langue originaleAnglais
titre2025 IEEE Symposium on Computational Intelligence in Security, Defence and Biometrics Companion, CISDB Companion 2025
EditeurInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronique)9798331508470
Les DOIs
étatPublié - 2025
Modification externeOui
Evénement2025 IEEE Symposium on Computational Intelligence in Security, Defence and Biometrics Companion, CISDB Companion 2025 - Trondheim, Norvège
Durée: 17 mars 202520 mars 2025

Série de publications

Nom2025 IEEE Symposium on Computational Intelligence in Security, Defence and Biometrics Companion, CISDB Companion 2025

Conférence

Conférence2025 IEEE Symposium on Computational Intelligence in Security, Defence and Biometrics Companion, CISDB Companion 2025
Pays/TerritoireNorvège
La villeTrondheim
période17/03/2520/03/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Imbalanced malware classification: an approach based on dynamic classifier selection ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation