Implicit and Parametric Avatar Pose and Shape Estimation From a Single Frontal Image of a Clothed Human

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

In this paper, we tackle the challenge of three-dimensional estimation of expressive, animatable, and textured human avatars from a single frontal image. Leveraging a Skinned Multi-Person Linear (SMPL) parametric body, we adjust the model parameters to faithfully reflect the shape and pose of the individual, relying on the mesh generated by a Pixel-aligned Implicit Function (PIFu) model. To robustly infer the SMPL parameters, we deploy a multi-step optimization process. Initially, we recover the position of 2D joints using an existing pose estimation tool. Subsequently, we utilize the 3D PIFu mesh together with the 2D pose to estimate the 3D position of joints. In the subsequent step, we adapt the body's parametric model to the 3D joints through rigid alignment, optimizing for global translation and rotation. This step provides a robust initialization for further refinement of shape and pose parameters. The next step involves optimizing the pose and the first component of the SMPL shape parameters while imposing constraints to enhance model robustness. We then refine the SMPL model pose and shape parameters by adding two new registration loss terms to the optimization cost function: a point-to-surface distance and a Chamfer distance. Finally, we introduce a refinement process utilizing a deformation vector field applied to the SMPL mesh, enabling more faithful modeling of tight to loose clothing geometry. A notable advantage of our approach is the ability to generate detailed avatars with fewer vertices compared to previous research, enhancing computational efficiency while maintaining high fidelity. To complete our model, we design a texture extraction and completion approach. Our entirely automated approach was evaluated against recognized benchmarks, X-Avatar and PeopleSnapshot, showcasing competitive performance against state-of-the-art methods. This approach contributes to advancing 3D modeling techniques, particularly in the realms of interactive applications, animation, and video games. We will make the code accompanying our paper publicly available upon its acceptance.

langue originaleAnglais
titreProceedings, MIG 2024 - 17th ACM SIGGRAPH Conference on Motion, Interaction, and Games
rédacteurs en chefStephen N. Spencer
EditeurAssociation for Computing Machinery, Inc
ISBN (Electronique)9798400710902
Les DOIs
étatPublié - 21 nov. 2024
Evénement17th ACM SIGGRAPH Conference on Motion, Interaction, and Games, MIG 2024 - Arlington, Etats-Unis
Durée: 21 nov. 202423 nov. 2024

Série de publications

NomProceedings, MIG 2024 - 17th ACM SIGGRAPH Conference on Motion, Interaction, and Games

Conférence

Conférence17th ACM SIGGRAPH Conference on Motion, Interaction, and Games, MIG 2024
Pays/TerritoireEtats-Unis
La villeArlington
période21/11/2423/11/24

Empreinte digitale

Voici les principaux termes ou expressions associés à « Implicit and Parametric Avatar Pose and Shape Estimation From a Single Frontal Image of a Clothed Human ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation