Improving Transformer Performance for French Clinical Notes Classification Using Mixture of Experts on a Limited Dataset

Résultats de recherche: Contribution à un journalArticle publié dans une revue, révisé par les pairsRevue par des pairs

Résumé

Transformer-based models have shown outstanding results in natural language processing but face challenges in applications like classifying small-scale clinical texts, especially with constrained computational resources. This study presents a customized Mixture of Expert (MoE) Transformer models for classifying small-scale French clinical texts at CHU Sainte-Justine Hospital. The MoE-Transformer addresses the dual challenges of effective training with limited data and low-resource computation suitable for in-house hospital use. Despite the success of biomedical pre-trained models such as CamemBERT-bio, DrBERT, and AliBERT, their high computational demands make them impractical for many clinical settings. Our MoE-Transformer model not only outperforms DistillBERT, CamemBERT, FlauBERT, and Transformer models on the same dataset but also achieves impressive results: an accuracy of 87%, precision of 87%, recall of 85%, and F1-score of 86%. While the MoE-Transformer does not surpass the performance of biomedical pre-trained BERT models, it can be trained at least 190 times faster, offering a viable alternative for settings with limited data and computational resources. Although the MoE-Transformer addresses challenges of generalization gaps and sharp minima, demonstrating some limitations for efficient and accurate clinical text classification, this model still represents a significant advancement in the field. It is particularly valuable for classifying small French clinical narratives within the privacy and constraints of hospital-based computational resources.

langue originaleAnglais
Pages (de - à)261-274
Nombre de pages14
journalIEEE Journal of Translational Engineering in Health and Medicine
Volume13
Les DOIs
étatPublié - 2025

Empreinte digitale

Voici les principaux termes ou expressions associés à « Improving Transformer Performance for French Clinical Notes Classification Using Mixture of Experts on a Limited Dataset ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation