INTRODUCTION TO PREDICTIVE MAINTENANCE BASED MACHINE LEARNING WITH RISK AND UNCERTAINCIES: A STATE OF THE ART

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Uncertain and risky environment surrounding industries makes equipment maintenance planning and scheduling very complex. Standard maintenance approaches such as corrective maintenance and preventive maintenance have been used for long time. More recently, predictive maintenance based on machine learning (PdM–ML) is taking more place within scientific and industrial community. It is preventive maintenance activities coupled with equipment monitoring condition. However, the implementation of such strategy is more complex and requires more financial and technological means than traditional approaches. Therefore, fully understanding the deployment aspects of the said maintenance strategy and the resulting benefits are prerequisites for business wishing to get in. This is even much more true for metallurgical companies where archaic and sophisticated characters of equipment coupled with highly typical skills of working personnel makes the situation more complex. This work aims to lay the foundations that will support the development of PdM–ML. The said approach will be tested in a metallurgy company to validate its robustness and applicability. For this, a literature review is carried out to identify, define and understand the subtleties surrounding (PdM–ML). The concepts of uncertainty and risk are also addressed. A new literature review methodology based on the systematic literature review (SLR) is presented and used to extract the relevant papers. The study reveals that, for the last then decade, the main fields of application of PdM–ML are manufacturing, electric-power, structure reliability. Also, the main goal observed for PdM–ML are failure diagnosis, failure prediction, failure detection, fault analysis and remaining useful life (RUL) prediction.

langue originaleAnglais
titreASEM 43rd International Annual Conference Proceedings
rédacteurs en chefG. Natarajan, E.H. Ng, P.F. Katina, H. Zhang
EditeurAmerican Society for Engineering Management
Pages668-678
Nombre de pages11
ISBN (Electronique)9798985333428
étatPublié - 2022
Evénement43rd International Annual Conference of the American Society for Engineering Management, ASEM 2022 - Tampa/Virtual, Etats-Unis
Durée: 5 oct. 20228 oct. 2022

Série de publications

NomASEM 43rd International Annual Conference Proceedings

Conférence

Conférence43rd International Annual Conference of the American Society for Engineering Management, ASEM 2022
Pays/TerritoireEtats-Unis
La villeTampa/Virtual
période5/10/228/10/22

SDG des Nations Unies

Ce résultat contribue à ou aux Objectifs de développement durable suivants

  1. SDG 9 – Industrie, innovation et infrastructure
    SDG 9 – Industrie, innovation et infrastructure

Empreinte digitale

Voici les principaux termes ou expressions associés à « INTRODUCTION TO PREDICTIVE MAINTENANCE BASED MACHINE LEARNING WITH RISK AND UNCERTAINCIES: A STATE OF THE ART ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation