Machine Learning Algorithms for Energy Consumption Prediction in Smart Homes: A Comparative Study

  • Donatien Koulla Moulla
  • , David Attipoe
  • , Lateef Adesola Akinyemi
  • , Sree Ganesh Thottempudi
  • , Jelil Olatunbosun Agbo-Ajala
  • , Ernest Mnkandla
  • , Alain Abran

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceChapitre de livreRevue par des pairs

1 Citation (Scopus)

Résumé

Accurate energy consumption prediction is important for optimizing energy usage, reducing costs, and minimizing environmental impact, particularly in smart homes. This study presents a comprehensive analysis of six leading machine learning algorithms for energy consumption prediction: long short-term memory (LSTM) networks, random forest (RF), extreme gradient boosting (XGBoost), gated recurrent unit (GRU), support vector machines (SVMs), and artificial neural networks (ANNs). The performance of each model was evaluated using metrics such as the mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2). The findings indicated that the RF model consistently outperformed the other models in terms of prediction accuracy, showing the lowest MAE and MSE, and the highest R2, both with and without incorporating weather data. Through examining their performance, strengths, and weaknesses, this study provides valuable insights into the suitability of these algorithms for smart home energy management applications.

langue originaleAnglais
titreLecture Notes on Data Engineering and Communications Technologies
EditeurSpringer Science and Business Media Deutschland GmbH
Pages75-94
Nombre de pages20
Les DOIs
étatPublié - 2025

Série de publications

NomLecture Notes on Data Engineering and Communications Technologies
Volume237
ISSN (imprimé)2367-4512
ISSN (Electronique)2367-4520

Empreinte digitale

Voici les principaux termes ou expressions associés à « Machine Learning Algorithms for Energy Consumption Prediction in Smart Homes: A Comparative Study ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation