Machine Learning-based Edge Caching for Video Streaming in 5G Networks

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

2 Citations (Scopus)

Résumé

The advent of 5G networks has brought significant advancements in the Quality of Service (QoS) provided to various applications, including video streaming. However, the increasing demand for high-quality video streaming, coupled with the need for low latency and improved user experience, poses challenges for the existing network architecture. Recently, there have been several proposals to utilize machine learning techniques in order to improve the QoS for mobile video users. These techniques aim to enhance various aspects of video delivery, such as video streaming, video compression, and video adaptation. This paper aims to explore the use of edge caching machine learning-based technique for video streaming services. In this paper, proof-of-concept experiments and the setup of a Hybrid Cloud-Edge Architecture with Amazon Web Services are presented. The experimental results demonstrate that applying machine learning to cloud-edge caching architecture is both feasible and effective.

langue originaleAnglais
titre8th International Conference on Recent Advances and Innovations in Engineering
Sous-titreEmpowering Computing, Analytics, and Engineering Through Digital Innovation, ICRAIE 2023
EditeurInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronique)9798350315516
Les DOIs
étatPublié - 2023
Modification externeOui
Evénement8th IEEE International Conference on Recent Advances and Innovations in Engineering, ICRAIE 2023 - Kuala Lumpur, Malaisie
Durée: 2 déc. 20233 déc. 2023

Série de publications

Nom8th International Conference on Recent Advances and Innovations in Engineering: Empowering Computing, Analytics, and Engineering Through Digital Innovation, ICRAIE 2023

Conférence

Conférence8th IEEE International Conference on Recent Advances and Innovations in Engineering, ICRAIE 2023
Pays/TerritoireMalaisie
La villeKuala Lumpur
période2/12/233/12/23

Empreinte digitale

Voici les principaux termes ou expressions associés à « Machine Learning-based Edge Caching for Video Streaming in 5G Networks ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation