Résumé
Warehouse design and planning involve complex decisions on receiving, storage, order picking and shipping products (i.e., stock-keeping units - SKUs) and can affect the performance of entire supply chains. With the advancement of Industry 4.0 and increased data availability, high-computing power, and ample storage capacity, Machine Learning (ML) has become an appealing technology to address warehouse planning challenges such as Storage Location Assignment Problems (SLAP) and Order Picking Problems (OPP) for intelligent warehousing management. This paper presents a state-of-the-art review of ML applied to Warehouse Management Systems (WMS) through the analysis of recent research application articles. A mapping to classify the scientific literature in this new research area, including ML methods, algorithms, data sources and use cases of ML-aided WMS, as well as further research perspectives and challenges, are introduced. Preliminary results suggest that the possible research areas in ML-WMS are still incipient and need to be further explored.
| langue originale | Anglais |
|---|---|
| Pages (de - à) | 2790-2799 |
| Nombre de pages | 10 |
| journal | Procedia Computer Science |
| Volume | 232 |
| Les DOIs | |
| état | Publié - 2024 |
| Evénement | 5th International Conference on Industry 4.0 and Smart Manufacturing, ISM 2023 - Lisbon, Portugal Durée: 22 nov. 2023 → 24 nov. 2023 |
SDG des Nations Unies
Ce résultat contribue à ou aux Objectifs de développement durable suivants
-
SDG 9 – Industrie, innovation et infrastructure
Empreinte digitale
Voici les principaux termes ou expressions associés à « Machine Learning in Warehouse Management: A Survey ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.Contient cette citation
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver