Merging Roles and Expertise: Redefining Stakeholder Characterization in Explainable Artificial Intelligence

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Explainable Artificial Intelligence (XAI) strives to make Artificial Intelligence Systems (AIS) more understandable, thus tackling the 'black box' challenge. However, successful implementation requires precise identification of XAI requirements, made complex by the absence of universally accepted protocols. Given the importance of identifying stakeholders in this quest, this article proposes an innovative framework to characterize them. We compare and merge two predominant approaches: role-based and knowledge-based characterizations. The result is a novel framework, segmenting knowledge into subcategories while linking them to specific roles. This XAI Roles and Knowledge Framework offers a flexible methodology that can be adapted to the nuances of each XAI project. By providing a balance between specificity and generality, this tool aims to guide the implementation of XAI while ensuring that the stakeholders' needs are taken into account. By using this approach, XAI projects benefit from a more precise identification of needs, leading to outcomes more closely aligned with user expectations and greater transparency in AI decisions.

langue originaleAnglais
titreCASCON 2024 Proceedings - 34th Annual International Conference on Collaborative Advances in Software and Computing
rédacteurs en chefParia Shirani, Khosro Salmani
EditeurInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronique)9798331504830
Les DOIs
étatPublié - 2024
Evénement34th Annual International Conference on Collaborative Advances in Software and Computing, CASCON 2024 - Toronto, Canada
Durée: 11 nov. 202413 nov. 2024

Série de publications

NomCASCON 2024 Proceedings - 34th Annual International Conference on Collaborative Advances in Software and Computing

Conférence

Conférence34th Annual International Conference on Collaborative Advances in Software and Computing, CASCON 2024
Pays/TerritoireCanada
La villeToronto
période11/11/2413/11/24

Empreinte digitale

Voici les principaux termes ou expressions associés à « Merging Roles and Expertise: Redefining Stakeholder Characterization in Explainable Artificial Intelligence ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation