Multidimensional Intrusion Detection System for Containerized Environments

  • Reda Morsli
  • , Nadjia Kara
  • , Hakima Ould-Slimane
  • , Laaziz Lahlou

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Intrusion Detection Systems (IDS) are critical for securing modern networks and systems; however, traditional IDS approaches often rely solely on network traffic or host-level data, limiting their ability to detect sophisticated threats such as AI-driven, zero-day, and polymorphic attacks. This limitation is even more pronounced in highly dynamic environments, such as cloud-based and containerized architectures, where the potential of leveraging rich contextual information remains underexplored. To address this gap, we propose a novel Multidimensional Intrusion Detection System (MIDS) approach that integrates multiple data dimensions, including network and container features, to enhance threat detection in containerized environments. By combining these dimensions, MIDS provides a holistic view of the cluster, enabling more comprehensive threat analysis and improved detection accuracy. We introduce a new data merging technique that unifies network flows with container metrics to facilitate multidimensional analysis. Due to the lack of existing datasets containing such heterogeneous data, we generated two MIDS datasets by simulating prevalent attacks on two well-known containerized applications deployed on Kubernetes (K8s): one using the Damn Vulnerable Web Application (DVWA) and the other using Google's Bank of Anthos (BoA). These simulations included Denial of Service (DoS), brute force, and SQL injection attacks. We evaluated state-of-the-art machine learning (ML) algorithms on these datasets, including SVM, XGBoost, and DNN. The experimental results demonstrate that using MIDS enables ML algorithms to achieve up to 8.69% and 30.07% higher F1 scores compared to using only network or container data, respectively. Feature analysis highlights the complementary contributions of network and container dimensions, showcasing the effectiveness of the proposed multidimensional approach for intrusion detection in containerized environments.

langue originaleAnglais
titreProceedings of the 11th IEEE International Conference on Network Softwarization, NetSoft 2025
rédacteurs en chefPal Varga, Walter Cerroni, Carol Fung, Robert Szabo, Massimo Tornatore
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages546-554
Nombre de pages9
ISBN (Electronique)9798331543457
Les DOIs
étatPublié - 2025
Evénement11th IEEE International Conference on Network Softwarization, NetSoft 2025 - Budapest, Hongrie
Durée: 23 juin 202527 juin 2025

Série de publications

NomProceedings of the 11th IEEE International Conference on Network Softwarization, NetSoft 2025

Conférence

Conférence11th IEEE International Conference on Network Softwarization, NetSoft 2025
Pays/TerritoireHongrie
La villeBudapest
période23/06/2527/06/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Multidimensional Intrusion Detection System for Containerized Environments ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation