Neural networks modelling of aero-derivative gas turbine engine: A comparison study

Ibrahem M.A. Ibrahem, Ouassima Akhrif, Hany Moustapha, Martin Staniszewski

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

9 Citations (Scopus)

Résumé

In this paper, the modelling of aero derivative gas turbine engine with six inputs and five outputs using two types of neural network is presented. Siemens three-spool dry low emission aero derivative gas turbine engine used for power generation (SGT-A65) was used as a case study in this paper. Data sets for training and validation were collected from a high fidelity transient simulation program. These data sets represent the engines operation above its idle status. Different neural network configurations were developed by using of a comprehensive computer code, which changes the neural networks parameters, namely, the number of neurons, the activation function and the training algorithm. Next, a comparative study was done among different neural models to find the most appropriate neural network structure in terms of computation time of neural network training operation and accuracy. The results show that on one hand, the dynamic neural network has a higher capability than the static neural network in representation of the engine dynamics. On the other hand however, it requires a much longer training time.

langue originaleAnglais
titreICINCO 2019 - Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics
rédacteurs en chefOleg Gusikhin, Kurosh Madani, Janan Zaytoon
EditeurSciTePress
Pages738-745
Nombre de pages8
ISBN (Electronique)9789897583803
Les DOIs
étatPublié - 2019
Evénement16th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2019 - Prague, République tchèque
Durée: 29 juil. 201931 juil. 2019

Série de publications

NomICINCO 2019 - Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics
Volume1

Conférence

Conférence16th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2019
Pays/TerritoireRépublique tchèque
La villePrague
période29/07/1931/07/19

Empreinte digitale

Voici les principaux termes ou expressions associés à « Neural networks modelling of aero-derivative gas turbine engine: A comparison study ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation