Résumé
This study introduces an innovative optimization strategy for Electro-Hydraulic Active Suspension Systems (EHASS), combining game theory with Particle Swarm Optimization (PSO) to tune backstepping control parameters. Unlike conventional approaches relying on manual tuning or trial-and-error, our method systematically optimizes these parameters, ensuring a well-balanced trade-off between ride comfort and road handling. The optimization process considers worst-case road disturbances, leading to a 79.5% reduction in tracking error, a 44.7% decrease in VDV, and a 51.2% improvement in Crest Factor, complying with ISO 2631 standards. Comprehensive validation across ten road profiles, including highly irregular terrains, confirms the robustness of the proposed method. Additionally, a comparison with Genetic Algorithm (GA)-based optimization highlights that PSO achieves superior convergence and performance. These findings establish a new benchmark for intelligent suspension control, making our approach a strong candidate for real-world automotive applications.
| langue originale | Anglais |
|---|---|
| Pages (de - à) | 35985-36005 |
| Nombre de pages | 21 |
| journal | IEEE Access |
| Volume | 13 |
| Les DOIs | |
| état | Publié - 2025 |
SDG des Nations Unies
Ce résultat contribue à ou aux Objectifs de développement durable suivants
-
SDG 7 – Energie propre et d'un coût abordable
-
SDG 9 – Industrie, innovation et infrastructure
-
SDG 12 – Consommation et production durables
Empreinte digitale
Voici les principaux termes ou expressions associés à « Optimization of the Backstepping Control Parameters of an Active Electrohydraulic Suspension to Improve Passenger Comfort and Road Handling ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.Contient cette citation
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver