Transfer learning for cross-building forecasting of building energy and indoor air temperature in model predictive control applications

Résultats de recherche: Contribution à un journalArticle publié dans une revue, révisé par les pairsRevue par des pairs

2 Citations (Scopus)

Résumé

When applying Model Predictive Control (MPC) for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings, accurate forecasting of short-term energy demand and indoor air condition profiles is essential. However, new or retrofitted buildings lack sufficient operation data to develop precise data-driven models. This study investigates transfer learning techniques to enhance the forecasting performance of black-box models under limited data conditions. Specifically, we leverage synthetic data from an open-source EnergyPlus building model to pre-train three neural network models, which are then transferred to a real building and fine-tuned with limited measurements. The results indicate that incorporating synthetic data into the pre-training phase significantly enhances the forecasting accuracy for building and HVAC energy, as well as indoor air temperature profiles, over a 12-h horizon with 15-min intervals. The study underscores the potential of combining transfer learning with synthetic data to address data limitations, extending the applicability of learning-based MPC in real-world buildings.

langue originaleAnglais
Numéro d'article113341
journalJournal of Building Engineering
Volume111
Les DOIs
étatPublié - 1 oct. 2025

SDG des Nations Unies

Ce résultat contribue à ou aux Objectifs de développement durable suivants

  1. SDG 7 – Energie propre et d'un coût abordable
    SDG 7 – Energie propre et d'un coût abordable

Empreinte digitale

Voici les principaux termes ou expressions associés à « Transfer learning for cross-building forecasting of building energy and indoor air temperature in model predictive control applications ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation