Résumé
This paper introduces a bi-discriminator GAN for synthesizing tabular datasets containing continuous, binary, and discrete columns. Our proposed approach employs an adapted preprocessing scheme and a novel conditional term using the χβ2 distribution for the generator network to more effectively capture the input sample distributions. Additionally, we implement straightforward yet effective architectures for discriminator networks aiming at providing more discriminative gradient information to the generator. Our experimental results on four benchmarking public datasets corroborates the superior performance of our GAN both in terms of likelihood fitness metric and machine learning efficacy.
| langue originale | Anglais |
|---|---|
| Pages (de - à) | 204-210 |
| Nombre de pages | 7 |
| journal | Pattern Recognition Letters |
| Volume | 159 |
| Les DOIs | |
| état | Publié - juil. 2022 |
Empreinte digitale
Voici les principaux termes ou expressions associés à « Bi-discriminator GAN for tabular data synthesis ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.Contient cette citation
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver