Few-Shot, Now for Real: Medical VLMs Adaptation Without Balanced Sets or Validation

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Vision-language models (VLMs) are gaining attention in medical image analysis. These are pre-trained on large, heterogeneous data sources, yielding rich and transferable representations. Notably, the combination of modality-specialized VLMs with few-shot adaptation has provided fruitful results, enabling the efficient deployment of high-performing solutions. However, previous works on this topic make strong assumptions about the distribution of adaptation data, which are unrealistic in the medical domain. First, prior art assumes access to a balanced support set, a condition that breaks the natural imbalance in disease prevalence found in real-world scenarios. Second, these works typically assume the presence of an additional validation set to fix critical hyper-parameters, which is highly data-inefficient. This work challenges these favorable deployment scenarios and introduces a realistic, imbalanced, validation-free adaptation setting. Our extensive benchmark across various modalities and downstream tasks demonstrates that current methods systematically compromise their performance when operating under realistic conditions, occasionally even performing worse than zero-shot inference. Also, we introduce a training-free linear probe that adaptively blends visual and textual supervision. Detailed studies demonstrate that the proposed solver is a strong, efficient baseline, enabling robust adaptation in challenging scenarios. Code is available: https://github.com/jusiro/SS-Text.

langue originaleAnglais
titreMedical Image Computing and Computer Assisted Intervention, MICCAI 2025 - 28th International Conference, Proceedings
rédacteurs en chefJames C. Gee, Jaesung Hong, Carole H. Sudre, Polina Golland, Daniel C. Alexander, Juan Eugenio Iglesias, Archana Venkataraman, Jong Hyo Kim
EditeurSpringer Science and Business Media Deutschland GmbH
Pages237-247
Nombre de pages11
ISBN (imprimé)9783032049803
Les DOIs
étatPublié - 2026
Evénement28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025 - Daejeon, Corée du Sud
Durée: 23 sept. 202527 sept. 2025

Série de publications

NomLecture Notes in Computer Science
Volume15966 LNCS
ISSN (imprimé)0302-9743
ISSN (Electronique)1611-3349

Conférence

Conférence28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Pays/TerritoireCorée du Sud
La villeDaejeon
période23/09/2527/09/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Few-Shot, Now for Real: Medical VLMs Adaptation Without Balanced Sets or Validation ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation