Full Conformal Adaptation of Medical Vision-Language Models

  • Julio Silva-Rodríguez
  • , Leo Fillioux
  • , Paul Henry Cournède
  • , Maria Vakalopoulou
  • , Stergios Christodoulidis
  • , Ismail Ben Ayed
  • , Jose Dolz

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Vision-language models (VLMs) pre-trained at large scale have shown unprecedented transferability capabilities and are being progressively integrated into medical image analysis. Although its discriminative potential has been widely explored, its reliability aspect remains overlooked. This work investigates their behavior under the increasingly popular split conformal prediction (SCP) framework, which theoretically guarantees a given error level on output sets by leveraging a labeled calibration set. However, the zero-shot performance of VLMs is inherently limited, and common practice involves few-shot transfer learning pipelines, which cannot absorb the rigid exchangeability assumptions of SCP. To alleviate this issue, we propose full conformal adaptation, a novel setting for jointly adapting and conformalizing pre-trained foundation models, which operates transductively over each test data point using a few-shot adaptation set. Moreover, we complement this framework with SS-Text, a novel training-free linear probe solver for VLMs that alleviates the computational cost of such a transductive approach. We provide comprehensive experiments using 3 different modality-specialized medical VLMs and 9 adaptation tasks. Our framework requires exactly the same data as SCP, and provides consistent relative improvements of up to 27% on set efficiency while maintaining the same coverage guarantees. Code is available: https://github.com/jusiro/FCA

langue originaleAnglais
titreInformation Processing in Medical Imaging - 29th International Conference, IPMI 2025, Proceedings
rédacteurs en chefIpek Oguz, Shaoting Zhang, Dimitris N. Metaxas
EditeurSpringer Science and Business Media Deutschland GmbH
Pages278-293
Nombre de pages16
ISBN (imprimé)9783031966248
Les DOIs
étatPublié - 2026
Evénement29th International Conference on Information Processing in Medical Imaging, IPMI 2025 - Kos, Grèce
Durée: 25 mai 202530 mai 2025

Série de publications

NomLecture Notes in Computer Science
Volume15830 LNCS
ISSN (imprimé)0302-9743
ISSN (Electronique)1611-3349

Conférence

Conférence29th International Conference on Information Processing in Medical Imaging, IPMI 2025
Pays/TerritoireGrèce
La villeKos
période25/05/2530/05/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Full Conformal Adaptation of Medical Vision-Language Models ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation