MAD-AD: Masked Diffusion for Unsupervised Brain Anomaly Detection

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

Unsupervised anomaly detection in brain images is crucial for identifying injuries and pathologies without access to labels. However, the accurate localization of anomalies in medical images remains challenging due to the inherent complexity and variability of brain structures and the scarcity of annotated abnormal data. To address this challenge, we propose a novel approach that incorporates masking within diffusion models, leveraging their generative capabilities to learn robust representations of normal brain anatomy. During training, our model processes only normal brain MRI scans and performs a forward diffusion process in the latent space that adds noise to the features of randomly-selected patches. Following a dual objective, the model learns to identify which patches are noisy and recover their original features. This strategy ensures that the model captures intricate patterns of normal brain structures while isolating potential anomalies as noise in the latent space. At inference, the model identifies noisy patches corresponding to anomalies and generates a normal counterpart for these patches by applying a reverse diffusion process. Our method surpasses existing unsupervised anomaly detection techniques, demonstrating superior performance in generating accurate normal counterparts and localizing anomalies. The code is available at hhttps://github.com/farzad-bz/MAD-AD.

langue originaleAnglais
titreInformation Processing in Medical Imaging - 29th International Conference, IPMI 2025, Proceedings
rédacteurs en chefIpek Oguz, Shaoting Zhang, Dimitris N. Metaxas
EditeurSpringer Science and Business Media Deutschland GmbH
Pages139-153
Nombre de pages15
ISBN (imprimé)9783031966248
Les DOIs
étatPublié - 2026
Evénement29th International Conference on Information Processing in Medical Imaging, IPMI 2025 - Kos, Grèce
Durée: 25 mai 202530 mai 2025

Série de publications

NomLecture Notes in Computer Science
Volume15830 LNCS
ISSN (imprimé)0302-9743
ISSN (Electronique)1611-3349

Conférence

Conférence29th International Conference on Information Processing in Medical Imaging, IPMI 2025
Pays/TerritoireGrèce
La villeKos
période25/05/2530/05/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « MAD-AD: Masked Diffusion for Unsupervised Brain Anomaly Detection ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation