Prompt Learning With Bounding Box Constraints for Medical Image Segmentation

Résultats de recherche: Contribution à un journalArticle publié dans une revue, révisé par les pairsRevue par des pairs

Résumé

Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised approaches based on bounding box annotations—much easier to acquire—offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multi-modal datasets reveal that, using the Segment Anything Model (SAM) as backbone, our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches.

langue originaleAnglais
Pages (de - à)359-368
Nombre de pages10
journalIEEE Transactions on Biomedical Engineering
Volume73
Numéro de publication1
Les DOIs
étatPublié - 2026

Empreinte digitale

Voici les principaux termes ou expressions associés à « Prompt Learning With Bounding Box Constraints for Medical Image Segmentation ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation