Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

1 Citation (Scopus)

Résumé

Parameter-efficient fine-tuning (PEFT) of pre-trained foundation models is increasingly attracting interest in medical imaging due to its effectiveness and computational efficiency. Among these methods, Low-Rank Adaptation (LoRA) is a notable approach based on the assumption that the adaptation inherently occurs in a low-dimensional subspace. While it has shown good performance, its implementation requires a fixed and unalterable rank, which might be challenging to select given the unique complexities and requirements of each medical imaging downstream task. Inspired by advancements in natural image processing, we introduce a novel approach for medical image segmentation that dynamically adjusts the intrinsic rank during adaptation. Viewing the low-rank representation of the trainable weight matrices as a singular value decomposition, we introduce an l1 sparsity regularizer to the loss function, and tackle it with a proximal optimizer. The regularizer could be viewed as a penalty on the decomposition rank. Hence, its minimization enables to find task-adapted ranks automatically. Our method is evaluated in a realistic few-shot fine-tuning setting, where we compare it first to the standard LoRA and then to several other PEFT methods across two distinguishable tasks: base organs and novel organs. Our extensive experiments demonstrate the significant performance improvements driven by our method, highlighting its efficiency and robustness against suboptimal rank initialization. Our code is publicly available: https://github.com/ghassenbaklouti/ARENA.

langue originaleAnglais
titreMedical Image Computing and Computer Assisted Intervention, MICCAI 2025 - 28th International Conference, Proceedings
rédacteurs en chefJames C. Gee, Jaesung Hong, Carole H. Sudre, Polina Golland, Daniel C. Alexander, Juan Eugenio Iglesias, Archana Venkataraman, Jong Hyo Kim
EditeurSpringer Science and Business Media Deutschland GmbH
Pages517-527
Nombre de pages11
ISBN (imprimé)9783032049803
Les DOIs
étatPublié - 2026
Evénement28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025 - Daejeon, Corée du Sud
Durée: 23 sept. 202527 sept. 2025

Série de publications

NomLecture Notes in Computer Science
Volume15966 LNCS
ISSN (imprimé)0302-9743
ISSN (Electronique)1611-3349

Conférence

Conférence28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Pays/TerritoireCorée du Sud
La villeDaejeon
période23/09/2527/09/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation