Attention-Based Class-Conditioned Alignment for Multi-Source Domain Adaptation of Object Detectors

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

1 Citation (Scopus)

Résumé

Domain adaptation methods for object detection (OD) strive to mitigate the impact of distribution shifts by promoting feature alignment across source and target domains. Multi-source domain adaptation (MSDA) allows leveraging multiple annotated source datasets and unlabeled target data to improve the accuracy and robustness of the detection model. Most state-of-the-art MSDA methods for OD perform feature alignment in a class-agnostic manner. This is challenging since the objects have unique modality information due to variations in object appearance across domains. A recent prototype-based approach proposed a class-wise alignment, yet it suffers from error accumulation caused by noisy pseudo-labels that can negatively affect adaptation with imbalanced data. To overcome these limitations, we propose an attention-based class-conditioned alignment method for MSDA, designed to align instances of each object category across domains. In particular, an attention module combined with an adversarial domain classifier allows learning domain-invariant and class-specific instance representations. Experimental results on multiple benchmarking MSDA datasets indicate that our method outperforms state-of-the-art methods and exhibits robustness to class imbalance, achieved through a conceptually simple class-conditioning strategy. Our code is available at: https://github.com/imatif17/ACIA.

langue originaleAnglais
titreProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages8566-8575
Nombre de pages10
ISBN (Electronique)9798331510831
Les DOIs
étatPublié - 2025
Evénement2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 - Tucson, Etats-Unis
Durée: 28 févr. 20254 mars 2025

Série de publications

NomProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025

Conférence

Conférence2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
Pays/TerritoireEtats-Unis
La villeTucson
période28/02/254/03/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Attention-Based Class-Conditioned Alignment for Multi-Source Domain Adaptation of Object Detectors ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation