Bidirectional Multi-Step Domain Generalization for Visible-Infrared Person Re-Identification

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

1 Citation (Scopus)

Résumé

A key challenge in visible-infrared person re-identification (V-I ReID) is training a backbone model capable of effectively addressing the significant discrepancies across modalities. State-of-the-art methods that generate a single intermediate bridging domain are often less effective, as this generated domain may not adequately capture sufficient common discriminant information. This paper introduces Bidirectional Multi-step Domain Generalization (BMDG), a novel approach for unifying feature representations across diverse modalities. BMDG creates multiple virtual intermediate domains by learning and aligning body part features extracted from both I and V modalities. In particular, our method aims to minimize the cross-modal gap in two steps. First, BMDG aligns modalities in the feature space by learning shared and modality-invariant body part prototypes from V and I images. Then, it generalizes the feature representation by applying bidirectional multi-step learning, which progressively refines feature representations in each step and incorporates more prototypes from both modalities. Based on these prototypes, multiple bridging steps enhance the feature representation. Experiments11Our code is available at: alehdaghi.github.io/BMDG conducted on V-I ReID datasets indicate that our BMDG approach can outperform state-of-the-art part-based and intermediate generation methods, and can be integrated into other part-based methods to enhance their V-I ReID performance.

langue originaleAnglais
titreProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages763-773
Nombre de pages11
ISBN (Electronique)9798331510831
Les DOIs
étatPublié - 2025
Evénement2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 - Tucson, Etats-Unis
Durée: 28 févr. 20254 mars 2025

Série de publications

NomProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025

Conférence

Conférence2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
Pays/TerritoireEtats-Unis
La villeTucson
période28/02/254/03/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Bidirectional Multi-Step Domain Generalization for Visible-Infrared Person Re-Identification ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation