Neural Network Modeling for the Meca500 Industrial Robot: Practical Implementation, Validation, and Testing

Résultats de recherche: Chapitre dans un livre, rapport, actes de conférenceParticipation à un ouvrage collectif lié à un colloque ou une conférenceRevue par des pairs

Résumé

This paper presents a movement model for Meca500, an ultra-compact six-axis industrial robot, using a multilayer perceptron neural network (MLP). Accurate robot calibration is essential for advanced control techniques. However, the minimal difference between input and output velocity vectors, measured in millimeters, makes precise identification challenging. To address this, input-output data from various practical experiments were collected and used to generate multiple neural models, varying parameters such as training optimizers, neuron count, activation functions, and training algorithms. The best-performing model was selected through data analysis and validated. Results indicate that the optimized neural network accurately predicts the robot's output behavior with minimal mean absolute error (MAE): 0.15 mm at low velocity, 0.52 mm at intermediate velocity, and 1.5 mm at high velocity in both Y and Z directions. This study confirms the feasibility of using neural networks for precise robot system modeling, enhancing simulation accuracy before real-world deployment.

langue originaleAnglais
titre2025 International Telecommunications Conference, ITC-Egypt 2025
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages279-284
Nombre de pages6
ISBN (Electronique)9781665458009
Les DOIs
étatPublié - 2025
Evénement2025 International Telecommunications Conference, ITC-Egypt 2025 - Cairo, Egypte
Durée: 28 juil. 202531 juil. 2025

Série de publications

Nom2025 International Telecommunications Conference, ITC-Egypt 2025

Conférence

Conférence2025 International Telecommunications Conference, ITC-Egypt 2025
Pays/TerritoireEgypte
La villeCairo
période28/07/2531/07/25

Empreinte digitale

Voici les principaux termes ou expressions associés à « Neural Network Modeling for the Meca500 Industrial Robot: Practical Implementation, Validation, and Testing ». Ces libellés thématiques sont générés à partir du titre et du résumé de la publication. Ensemble, ils forment une empreinte digitale unique.

Contient cette citation